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Three-dimensional stability of a Burgers vortex
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The evolution of infinitesimal three-dimensional perturbations superimposed on a
Burgers vortex is studied. By a sequence of variable transformations and scalings
this linear evolution problem is reduced to a time-dependent system which is nearly
identical to the stability equations governing a Lamb–Oseen vortex. The maximum
amplification reached by perturbations over a finite time interval is computed through
an iterative scheme based on the direct and adjoint governing equations, and results
on the asymptotic stability of the Burgers vortex are deduced. The Burgers vortex is
shown to be asymptotically stable, although significant short-term amplification may
occur.

1. Introduction
Numerical simulations (Vincent & Meneguzzi 1991; Jimenez et al. 1993) and

experiments (Cadot, Douady & Couder 1995) on turbulent flows have produced
abundant evidence of the importance of the vortex stretching mechanism. In
particular, the balance between vorticity production by stretching (Saffman 1992)
and vortex diffusion has been studied extensively since it is believed to represent the
underlying dynamic mechanism for vortex-dominated flows. It thus should not be
surprising that the uniformly stretched vortex, the so-called Burgers vortex (Lundgren
1982; see also Pullin & Saffman 1998), as well as its asymmetric companion (Moffatt,
Kida & Ohkitani 1994) have repeatedly been used to model generic vortex filament
behaviour in high-resolution numerical simulations. These models have, however,
been of limited value since the alignment of the vorticity vector with the vortex
axis and with a principal direction of strain has rendered them of somewhat limited
physical significance.

Various extensions of the basic models to more complex situations have been
proposed (Rossi 2000). Radial dependence of the strain rate, but independence of
the axial velocity of the axial coordinate direction has been considered by Gibbon,
Fokas & Doering (1999), while Le Dizès, Rossi & Moffatt (1996) and Eloy & Le Dizès
(1999) studied ways to suppress the elliptic instability by axial stretching. Verzicco,
Jiménez & Orlandi (1995) addressed the effect of local compression on the vortex
dynamics.

General results on the stability of the Burgers vortex are rather limited. Purely two-
dimensional perturbations have been studied by Robinson & Saffman (1984) where
an analytical solution for low Reynolds numbers has been obtained. These results
have subsequently been extended by Prochazka & Pullin (1995) for Reynolds numbers
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up to Re =104. Both studies concluded that the temporal spectrum associated with
two-dimensional perturbations is discrete and contains only damped modes. Rossi &
Le Dizès (1997) showed that the discrete part of the temporal spectrum of steady
stretched vortices contains only modes which do not depend on the axial coordinate
(stretching axis), i.e. are purely two-dimensional. The global monotonic stability of
the Burgers vortex has been addressed by Leibovitch & Holmes (1981) who showed
that no finite critical viscosity exists for such a problem. Recently, Crowdy (1998)
derived analytical dispersion relations for the evolution of axisymmetric disturbances
in the asymptotic limit of large axial distances and small Reynolds numbers. To our
knowledge, a general study of the linear evolution of three-dimensional perturbations
on an axisymmetric Burgers vortex has not been attempted thus far. An analysis of
this problem is the main focus of this article.

2. Linearized equations for three-dimensional perturbations
The well-known Burgers vortex describes an axisymmetric vortex subjected to an

axial strain field of constant strain rate γ . The velocity field (UBurg, V Burg, WBurg) is
expressed in polar coordinates (r, θ, z) as

UBurg = − 1
2
γ r, WBurg = γ z, (2.1a)

V Burg =
Γ

2πr

(
1 − exp

(
− r2

a2
0

))
, (2.1b)

with a2
0 = 4ν/γ. This steady velocity field represents one of the few three-dimensional

exact solutions of the Navier–Stokes equations: the azimuthal velocity component is
characterized by the circulation Γ, and the stretching field counteracts the diffusion
of the vortex core due to the kinematic viscosity ν. We recall that this base flow can
be related to an unstretched vortex solution. This is accomplished using the elegant
Lundgren transformation (Lundgren 1982)

r −→ r̄ =
√

s(t)r, θ −→ θ, (2.2a)

t −→ t̄ =

∫ t

0

s(u) du =
1

γ
(exp(γ t) − 1), (2.2b)

with s(t) ≡ exp(γ t). Using these generalized space and time coordinates, the Burgers
vortex (2.1) can be recast as a diffusing Lamb–Oseen vortex (0, V̄ 2D(r̄ , t̄), 0) with

V̄ 2D(r̄ , t̄) =
V Burg(r̄/

√
s(t))√

s(t)
=

Γ

2πr̄

(
1 − exp

(
− r̄2

a2(̄t)

))
, (2.3)

where the vortex core size a(̄t) increases due to viscous diffusion, namely a2(̄t) = a2
0 +

4νt̄ with a0 denoting the initial core size.
We proceed by analysing the evolution of infinitesimal three-dimensional perturba-

tions superimposed on the Burgers vortex UBurg(r, z). The governing equations are

∂u
∂t

+ (UBurg(r, z) · ∇)u + (u · ∇)UBurg(r, z) = −∇p + ν�u, ∇ · u = 0, (2.4)

where u and p denote the disturbance velocity and pressure, respectively. Owing
to the explicit z-dependence in (2.1) standard Fourier transform techniques fail to
provide an efficient method of treating the resulting stability problem. In what follows
we outline a sequence of manipulations that transforms equations (2.4) into a set of
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linear equations which are nearly identical to the equations governing the dynamics
of infinitesimal perturbations on an axisymmetric unstretched time-dependent vortex,
i.e. the diffusing Lamb–Oseen vortex.

We apply Lundgren’s transformation (2.2) to the three-dimensional perturbation
equations (2.4) together with the following set of mappings for the independent z-
variable as well as for the pressure (p) and for the radial (u), azimuthal (v), and axial
(w) velocities:

z −→ z̄ =
z

S
, p̄ =

p

S
, ū =

u√
S

, v̄ =
v√
S

, w̄ = Sw, (2.5)

where we have introduced the non-dimensional quantity S (̄t) ≡ s(t) = 1 + γ t̄

(see (2.2b)). The transformation of the independent variable z in (2.5) can equivalently
be expressed in terms of a time-dependent axial wavenumber – a technique commonly
used in the context of inertial waves (see Craik & Criminale 1986) or rapid distortion
theory (Batchelor & Proudman 1954; Cambon & Scott 1999). In addition, the scalings
of the quantities u, v, w, p are designed to balance the amplifying effects of stretching.
It is important to note that neither the partial derivatives with respect to the azimuthal
coordinate θ nor the elementary infinitesimal volume r dr dθ dz are affected by the
sequence of transformations (2.2) and (2.5). Due to these changes, the terms in (2.4)
related to stretching – such as − 1

2
γ r(∂u/∂r), γ z(∂u/∂z), − 1

2
γ u, γw – are eliminated,

and stretching effects are accounted for by the time-dependent term S (̄t). For instance,
the convective derivative is

D

Dt
= S (̄t)

D̄

D̄t̄
with

D̄

D̄t̄
≡ ∂

∂t̄
+

V̄ 2D(r̄ , t̄)

r̄

∂

∂θ
. (2.6)

The complete linear system, after applying the above transformations, is then

D̄ū

D̄t̄
− 2

V̄ 2D

r̄
v̄ = −∂p̄

∂r̄
+ ν

[
(�2D ū)r̄ +

1

S3

∂2ū

∂z̄2

]
, (2.7a)

D̄v̄

D̄t̄
+

(
∂V̄ 2D

∂r̄
+

V̄ 2D

r̄

)
ū = −1

r̄

∂p̄

∂θ
+ ν

[
(�2D ū)θ +

1

S3

∂2v̄

∂z̄2

]
, (2.7b)

D̄w̄

D̄t̄
= −∂p̄

∂z̄
+ ν

[
(�2D ū)z̄ +

1

S3

∂2w̄

∂z̄2

]
, (2.7c)

∂ū

∂r̄
+

ū

r̄
+

1

r̄

∂v̄

∂θ
+

1

S3

∂w̄

∂z̄
= 0, (2.7d)

where �2D ū denotes the vector Laplacian operator in the cross-sectional (r̄ , θ)-plane

(�2D ū)r̄ =
∂

∂r̄

(
1

r̄

∂

∂r̄
(r̄ ū)

)
+

1

r̄2

∂2ū

∂θ2
+

2

r̄2

∂v̄

∂θ
,

(�2D ū)θ =
∂

∂r̄

(
1

r̄

∂

∂r̄
(r̄ v̄)

)
+

1

r̄2

∂2v̄

∂θ2
− 2

r̄2

∂ū

∂θ
,

(�2D ū)z̄ =
1

r̄

∂

∂r̄

(
r̄
∂w̄

∂r̄

)
+

1

r̄2

∂2w̄

∂θ2
.

The transformed system (2.7) is autonomous in the axial variables and is thus
amenable to Fourier transforms in the axial direction. Moreover, the above
manipulation illustrates that the stability of a stretched Burgers vortex with respect
to two-dimensional (∂/∂z̄ ≡ 0) perturbations is equivalent to the stability of an
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equivalent unstretched but diffusing Lamb–Oseen vortex (0, V̂ 2D(r̄ , t̄), 0). For general
three-dimensional perturbations, the difference between the equations for the stretched
Burgers vortex and the equations for the diffusing Lamb–Oseen vortex consists merely
of the appearance of the time-dependent 1/S3 terms associated with derivatives with
respect to z̄. These time-dependent terms appear in the conservation equations for
both momentum and mass.

In the subsequent analysis, the time origin is shifted by 1/γ so that the time origin
corresponds to the instant when the Lamb–Oseen vortex is singular:

t̄∗ ≡ t̄ +
1

γ
so that S (̄t∗) = γ t̄∗, a2(̄t∗) = 4νt̄∗, ln

(
t̄∗

t̄∗
1

)
= γ t with t̄∗

1 ≡ 1/γ,

(2.8)

where (2.2b) has been used. From now on, the asterisk superscript in time t̄∗ is omitted.
A disturbance thus evolves over a time period [̄t1, ∞[. This interval is subsequently
divided into a sequence of disjoint subintervals [̄tp, t̄p+1] where t̄p ≡ αp−1 t̄1 and
α is an arbitrary constant strictly greater than one. Definition (2.8) shows that,
at time t̄p, the vortex core size a(̄t) is equal to 2δp with δp =(νt̄p)1/2. Within each
subinterval [̄tp, t̄p+1] we proceed by non-dimensionalizing the governing equations (2.7)
by appropriately chosen scales: the radial (ū) and azimuthal (v̄) velocity components
are non-dimensionalized by Γ/δp, the axial velocity component w̄ by (Γ/δp)(γ t̄p)3/2,

and the pressure p by (Γ/δp)2. The independent variables t̄ , r̄, and z̄ are non-
dimensionalized by t̄p, δp, and δp(γ t̄p)−3/2, respectively. In what follows, superscripts
ˆ(resp.¯) denote non-dimensional (resp. dimensional) quantities or space/time variables
in the transformed space. When these superscripts are absent, quantities or space/time
variables are assumed to be dimensional and written in physical space. Within each
subinterval, the non-dimensional linear problem is

D̂û

D̂t̂
− 2

V̂ 2D

r̂
v̂ = −∂p̂

∂r̂
+

1

ReΓ

[
(�2D û)r̂ +

1

t̂3

∂2û

∂ẑ2

]
, (2.9a)

D̂v̂

D̂t̂
+

(
∂V̂ 2D

∂r̂
+

V̂ 2D

r̂

)
û = −1

r̂

∂p̂

∂θ
+

1

ReΓ

[
(�2D û)θ +

1

t̂3

∂2v̂

∂ẑ2

]
, (2.9b)

D̂ŵ

D̂t̂
= −∂p̂

∂ẑ
+

1

ReΓ

[
(�2D û)ẑ +

1

t̂3

∂2ŵ

∂ẑ2

]
, (2.9c)

∂û

∂r̂
+

û

r̂
+

1

r̂

∂v̂

∂θ
+

1

t̂3

∂ŵ

∂ẑ
= 0 (2.9d)

D̂

D̂t̂
≡ 1

ReΓ

∂

∂t̂
+

V̂ 2D(r̂ , t̂)

r̂

∂

∂θ
, (2.9e)

where the Reynolds numbers is defined as ReΓ = Γ/ν, and

V̂ 2D(r̂ , t̂) =
1

2πr̂

(
1 − exp

(
− r̂2

4t̂

))
. (2.10)

Note that equations (2.9) are independent of the interval [̄tp, t̄p+1], and thus can be
solved over the same non-dimensional interval t̂ ∈ [1, α]. The evolution of three-
dimensional disturbances on a Burgers vortex have thus been reduced to the study
of the simplified equations (2.9) to be solved over a single finite time period. The
full temporal dynamics of the three-dimensional perturbations can be recovered by
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inverting the scalings and transformations (which depend on the sub-interval under
consideration) that lead to (2.9).

The kinetic energy of perturbations superimposed on the Burgers vortex,

I (t) =

∫
(u2(t) + v2(t) + w2(t))r dr dθ dz, (2.11)

is a natural and common measure of disturbance size. In (2.11), the integration
is performed over the entire (r, θ, z) space and the perturbations are assumed to
be compact within the integration domain. Transformations (2.2) and (2.5) are
applied to relate expression (2.11) to an equivalent formula involving the solution of
equations (2.7). We obtain

I (t) ≡ J (̄t) =

∫ (
S (̄t)ū2(̄t) + S (̄t)v̄2(̄t) +

1

S2(̄t)
w̄2(̄t)

)
r̄ dr̄ dθ dz̄. (2.12)

Equations (2.7) can be Fourier transformed in the axial and azimuthal coordinate
directions which introduces an axial wavenumber k̄ and an azimuthal wavenumber
m. We note that the constant axial wavenumber k̄ corresponds to a temporally
evolving wavenumber k(t) = k̄/s(t) in physical space. Since wavenumber pairs (k̄, m)
evolve independently from each other and the energy (2.12) can be orthogonally
decomposed in such a Fourier basis, we consider the individual contributions of each
wavenumber pair (k̄, m)

J (̄t; k̄, m) =

∫ ∞

0

(
S (̄t)ū(̄t)ū+(̄t) + S (̄t)v̄(̄t)v̄+(̄t) +

1

S2(̄t)
w̄(̄t)w̄(̄t)+

)
r̄ dr̄ , (2.13)

where the superscript + denotes the complex conjugation. In what follows the
dependence of J on the wavenumber pair (k̄, m) is omitted but implicitly assumed and
only the cases 0 � m, 0 � k are considered. This does not pose a loss of generality since
the linear problem (2.7) possesses the following symmetries: if (ū(r̄ , t̄), v̄(r̄ , t̄), w̄(r̄ , t̄))
is a solution of (2.7) for the wavenumber pair (k̄, m), it is also a solution for the
wavenumber pair (−k̄, m), and (ū+, v̄+, w̄+) is a solution for the wavenumber pair
(−k̄, −m). Let us now consider an initial perturbation of wavenumber pair (k̄, m)
normalized so that the energy at the initial time t̄1 is J (̄t1) = 1. At time t̄q ≡ αq−1 t̄1 –
or, equivalently, tq ≡ (q − 1) ln(α)/γ – the energy of this disturbance is

J (̄tq) =
J (̄tq)

J (̄tq−1)
· · · J (̄t2)

J (̄t1)
. (2.14)

The gain J (̄tp+1)/J (̄tp) over the time interval [̄tp, t̄p+1] with 1 � p � q − 1 can be
expressed in terms of the non-dimensional quantities

J (̄tp+1)

J (̄tp)
=

∫ (
αû(α)û+(α) + αv̂(α)v̂+(α) +

1

α2
ŵ(α)ŵ+(α)

)
r̂ dr̂

∫
(û(1)û+(1) + v̂(1)v̂+(1) + ŵ(1)ŵ+(1))r̂ dr̂

, (2.15)

where û(α; k̂p, m), v̂(α; k̂p, m), ŵ(α; k̂p, m) are obtained at time t̂ = α after integration

of system (2.9) over the time period [1, α] for wavenumber pair (k̂p, m) with k̂p ≡ k̄δp .

The gain (2.15) can be bounded by the maximum energy amplification Ĝ(k̂, m; α, ReΓ )
that a disturbance of wavenumber pair (k̂, m) can achieve at time t̂ = α.

After the above transformations and scalings we are now in a position to investigate
the transient as well as the asymptotic evolution of perturbations evolving on
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the Burgers vortex. To study the transient evolution of perturbations, one has to
compute the maximum energy amplification max[I (τ )/I (0)] reached at any given
time t = τ (Schmid & Henningson (2001)). This can most easily be accomplished by
working in the transformed time interval [̄t1, t̄2] and computing Ĝ(k̂, m; α, ReΓ ) with
α ≡ exp(γ τ ). A complete study of this problem will be presented elsewhere. Instead,
we will focus on the asymptotic stability of the steady Burgers vortex. We start by
using the following inequality:

J (̄tp+1)

J (̄tp)
� Ĝ(k̂p, m; α, ReΓ ), (2.16)

which, together with (2.14), yields an upper bound on I (tq) = J (̄tq) of the form

I (tq) �
q−1∏
p=1

Ĝ(k̂p, m; α, ReΓ ) with k̂p =

(
k̄

√
ν

γ

)
α(p−1)/2 and tq ≡ (q − 1)

lnα

γ
.

(2.17)

It is important to note that the non-dimensional axial wavenumber k̂p = k̄
√

ν/γ α(p−1)/2

increases with index p as we move from one sub-interval to the next, whereas the axial
wavenumber k̄ remains constant and the physical wawenumber k(t) decreases with
time. If, for a given azimuthal wavenumber m, there exists a critical wavenumber k̂c

beyond which the maximum gain Ĝ(k̂, m; α, ReΓ ) is strictly less than one, asymptotic
stability of the Burgers vortex can be demonstrated as follows. First, the quantity I (tq)
is bounded by expression (2.17). I (tq) tends to zero as the index q , and thus tq , tends

to infinity. This is a consequence of the fact that I (t1) is a product of gains Ĝ which,
above a certain index p, become strictly smaller than one. Any perturbation evolving
according to the linear operator of equation (2.4) must asymptotically behave in time
as tn exp(σ t); hence, the energy I (tq) must evolve as t2n

q exp(2σ tq). Since the quantity
I (tq) tends to zero as time tq goes to infinity, the exponential growth rate σ has to be
either strictly negative or zero with n< 0. Either condition then ensures the asymptotic
stability of the Burgers vortex. We have therefore reduced the Burgers stability
problem to computing the maximum energy gain Ĝ(k̂, m; α, ReΓ ) at time t̂ = α. The
presence of time-dependent coefficients in (2.9) prohibits the application of standard
techniques of modal stability analysis. A more sophisticated method (for details of
this procedure see Farrell & Ioannou 1996; Andersson, Berggren & Henningson 1999;
Luchini 2000 or Schmid & Henningson 2001) computes the maximum energy gain
Ĝ(k̂, m; α, ReΓ ) through an optimization problem that is best solved with the help of
the equations adjoint to (2.9). A standard derivation of these equations yields

D̂ũ

D̂t̂
+

(
∂V̂ 2D

∂r̂
+

V̂ 2D

r̂

)
ṽ =

∂p̃

∂r̂
+

1

ReΓ

[
(�2D ũ)r̂ +

1

t̂3

∂2ũ

∂ẑ2

]
, (2.18a)

D̂ṽ

D̂t̂
− 2

V̂ 2D

r̂
ũ =

1

r̂

∂p̃

∂θ
+

1

ReΓ

[
(�2D ũ)θ +

1

t̂3

∂2ṽ

∂ẑ2

]
, (2.18b)

D̂w̃

D̂t̂
=

1

t̂3

∂p̃

∂ẑ
+

1

ReΓ

[
(�2D ũ)ẑ +

1

t̂3

∂2w̃

∂ẑ2

]
, (2.18c)

∂ũ

∂r̂
+

ũ

r̂
+

1

r̂

∂ṽ

∂θ
+

∂w̃

∂ẑ
= 0, (2.18d)

D̂

D̂t̂
≡ − 1

ReΓ

∂

∂t̂
− V̂ 2D(r̂ , t̂)

r̂

∂

∂θ
(2.18e)
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Figure 1. Maximum energy amplification Ĝ(k̂, m; α, ReΓ ) as a function of the axial
wavenumber k̂ and selected azimuthal wavenumbers m. Results for Reynolds numbers
(a) ReΓ = 500, (b) ReΓ = 5000 are shown and α =1.2. Note the logarithmic scaling of the
vertical axis in (b). In (a), the critical axial wavenumber is defined (for the case m= 5) as the
axial wavenumber at which the energy amplification Ĝ drops below one (the shaded area).

with ũ, ṽ, w̃, p̃ as the adjoint velocities and adjoint pressure. Since we only consider
a specific wavenumber pair, the equations above are Fourier transformed along these
coordinate directions. The adjoint equations (2.18) have to be solved backwards in
time. An iterative scheme can then be devised which propagates a given initial
condition forward in time using (2.9), the result of which serves as an ‘initial’
condition for the backward propagation by the adjoint equations (2.18). After one
forward–backward integration an updated initial condition for the next iterative
step is available. Convergence is reached when the initial condition for the forward
problem does not change appreciably by an appropriately chosen criterion from one
iterative step to the next. The maximum energy amplification can then be computed
by propagating the converged initial condition forward in time and by forming the
ratio of the disturbance energy at the end of the time interval to the energy at the
beginning.

3. Results
The direct and adjoint equations, (2.9) and (2.18), respectively, have been discretized

using a hybrid pseudospectral scheme based on rationally mapped Chebyshev
polynomials. The number and distribution of collocation points has been adjusted to
obtain grid-independent solutions.

The results of the iterative method to compute the maximum energy amplification
Ĝ(k̂, m; α, ReΓ ) are displayed in figure 1 for two Reynolds numbers. We observe
an energy amplification for small to moderate axial wavenumbers; for higher axial
wavenumbers, however, the disturbance energy amplification is less than one and
quickly approaches the asymptotic behaviour Ĝ ∼ exp(−βk̂2) with β > 0 as k̂

tends to infinity. The critical axial wavenumber k̂c above which the maximum
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Figure 2. Critical axial wavenumber k̂c as a function of (a) Reynolds number ReΓ for
m= 0, 1, 2, 5 and (b) azimuthal wavenumber m for α =1.2.

energy amplification Ĝ becomes less than one (see figure 1a), is computed and
displayed in figure 2 as a function of the Reynolds number Re and the azimuthal
wavenumber m. Critical wavenumbers are observed to decrease as m increases.
In contrast, the critical wavenumbers increase with Reynolds number (but always
exist). For higher Reynolds number, significant short-term amplification has been
observed (note the logarithmic scaling on figure 1(b), i.e. for ReΓ = 5000), but a
comprehensive study of this phenomenon is left for a future effort. Finally, figure 3
illustrates the temporal evolution of the initial optimal condition corresponding to
a maximum amplification at time t̄ = αt̄1 (i.e. t = ln(α)/γ ) for Reynolds number
ReΓ = 1000, axial wavenumber k̄ = 0.5, i.e. k̄(0) = 0.5/δ1, and azimuthal wavenumber
m (three wavenumbers have been selected m = 1, 2, 5). Times t̄ = αt̄1, α

2 t̄1, α
3 t̄1, α

4 t̄1,

i.e. t = ln(α)/γ, 2 ln(α)/γ, 3 ln(α)/γ, 4 ln(α)/r , with α = 1.2 are shown. We observe in
all three cases that the mechanism of energy amplification appears to be associated
with a relaxation of the initial disturbance (at t̄ = t̄1) opposing the mean swirl, followed
by an azimuthal roll-up of the axial perturbation vorticity.

4. Summary and conclusions
The stability of a Burgers vortex with respect to three-dimensional perturbations

has been considered. An extended Lundgren transformation, together with a disection
of the time axis and an appropriate nondimensionalization, reduced the full stability
problem to a system of equations that describes the evolution of perturbations over a
finite time period based on a time-dependent simplified mean flow. Using the adjoint
stability equations, bounds on the maximum attainable growth of disturbance energy
have been computed. These bounds show that the Burgers vortex is asymptotically
stable to three-dimensional disturbances of infinitesimal amplitudes.

P. J. S. would like to thank the Université Pierre et Marie Curie for its support and
warm hospitality during his stay as enseignant invité. We are also indebted to Olivier
Daube (LIMSI) for his assistance in the early stage of this work.
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Figure 3. Temporal evolution of the axial component of the vorticity perturbation ωz shown as
isocontours in the (r, θ)-plane at a fixed axial location and for selected azimuthal wavenumbers
m. See the text for the chosen initial conditions. At each time t , twenty contours levels are
plotted ±(i/10)2ωz,max(t) with i = 1, 2, . . . , 10. Positive (negative) contour levels are represented
by solid (dotted) lines. Snapshots were taken at t = ln(α)/r, 2 ln(α)/γ, 3 ln(α)/γ, 4 ln(α)/γ ,
with α = 1.2 and cut in the radial direction at r̄ = 10 a0 where a0 is the Burgers vortex
size. The Reynolds number is ReΓ = 1000; the initial axial wavenumber k(t = 0) is such that
k(t = 0) = k̄ = 0.5/δ1.
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